维修:13019357547 工程/产品:13998863358

产品中心

    咨询热线

    13019357547 工程/产品:13998863358
    地址:沈阳市和平区三好街79号奉天硅谷大厦B座1305室
    传真:024-62685226

    企业资讯

    当前位置:首页-企业资讯

    污水处理工艺之MBBR:实现同步硝化反硝化机理

    发布时间:2020/03/03 点击量:0
    富士160KW变频器维修

    MBBR不仅建设周期短、投资省、运行费用低、管理简单方便和集中与分散处理皆适宜,而且工艺运行稳定可靠,抗冲击负荷能力强,是一种经济高效的污水处理工艺。

    MBBR工艺实现同步硝化反硝化机理

    1)同步硝化反硝化生物脱氮( SND)

    同步硝化反硝化脱氮技术( SND) 是在同一个反应器内同时产生硝化、反硝化和除碳反应。它突破了传统观点认为硝化和反硝化不能同时发生的认识,尤其是好氧条件下,也可以发生反硝化反应,使得同步硝化和反硝化成为可能。

    硝化过程消耗碱度,反硝化过程产生碱度,SND故能够有效地保持反应器中pH值稳定,无需酸碱中和,无需外加碳源;节省反应器体积,缩短反应时间,通过降低硝态氮浓度可以减少二沉池污泥漂浮,因而 SND 成为生物脱氮的一个研究热点。对于 SND 生物脱氮的可行性,目前有以下主要三种从不同角度出发得出的观点:

    宏观环境角度:该观点认为完全均匀混合状态是不存在的,反应器内 DO分布不均匀能够形成好氧、缺氧、厌氧区域,在同一生物反应器缺氧/厌氧环境条件下可以发生反硝化反应,联合区段内好氧环境中有机物去除和氨氮的硝化,SND是可以实现的。

    微环境角度:该观点认为微生物絮体内的缺氧微环境是形成 SND的主要原因,即由于氧的扩散( 传递) 限制,微生物絮体内存在溶解氧梯度,从而形成有利于实现同步硝化反硝化的微环境。

    生物学角度:该观点认为特殊微生物种群的存在被认为是发生 SND的主要原因,有的硝化细菌除了能够进行正常的硝化作用还能够进行反硝化作用,有荷兰学者分离出既可进行好氧硝化,又可进行好氧反硝化的泛养硫球菌;还有一些细菌彼此合作,进行序列反应,把氨转化为氮气,为在同一反应器在同一条件下完成生物脱氮提供了可能。

    目前对生物脱氮的微生物学研究和解释较多,但都不够完善,对 SND 现象的认识仍在发展与探索之中。微环境理论是被普遍接受的,由于溶解氧梯度的存在,微生物絮体或生物膜的外表面溶解氧浓度高,以好氧 硝化菌及氨化菌为主;深入内部,氧传递受阻及外部溶解氧大量的消耗而产生缺氧区,反硝化菌为优势菌种,故可导致同步硝化反硝化的发生。该理论解释了在同一反应器中不同菌种共同存在的问题,但也存在一个缺陷,即有机碳源问题。有机碳源既是异养反硝化的电子供体,又是硝化过程的抑制物质,污水中的有机碳源在穿过好氧层时,首先被好氧氧化,处于缺氧区的反硝化菌由于得不到电子供体而降低了反硝化速率,可能影响SND的脱氮效率,故同步硝化反硝化的机理仍需要进一步完善。

    2)MBBR生物移动床同步硝化反硝化脱氮机理

    MBBR是结合悬浮生长的活性污泥法和附着生长的生物膜法的高效新型反应器,基本设计原理是将比重接近水、可悬浮于水中的悬浮填料直接投加到反应池中作为微生物的活性载体,悬浮填料能与污水频繁多 次接触,逐渐在填料表面生长出生物膜( 挂膜) ,强化了污染物、溶解氧和生物膜的传质效果,即而 MBBR被称为“移动的生物膜”。基于迄今SND机理研究,综合微环境和生物学理论,MBBR生物膜内SND可能存在的反应模式是,分布于生物膜好氧层的好氧氨氧化菌、亚硝酸盐氧化菌和好氧反硝化细菌与分布于生物缺氧层的厌氧氨氧化菌、自养型亚硝酸细菌和反硝化细菌相互协作,最终达到脱氮目的。

    MBBR是依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,充分发挥附着相和悬浮相生物两者的优越性,不仅提供了宏观和微观的好 氧和厌氧环境,还解决了自养硝化菌、异养反硝化菌与异养细菌的DO之争和碳源之争。故MBBR可实现硝化和反硝化两个过程的动力学平衡,具有同步硝化反硝化非常良好的条件,能实现MBBR同步硝化反硝化脱氮。

    版权所有:换热站自动化_沈阳变频器维修_自动化系统工程_污水处理自动化     ICP备案编号: 辽ICP备11018776号-1